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We study the motion of a Brownian particle in a fluid from a dynamical point of view, i.e., without the 
a priori introduction of purely stochastic elements. The Brownian particle is distinguished primarily by hav
ing a mass M which is much greater than the mass of the fluid particles m. Our method consists of rewriting 
the Liouville equation for fx, the joint distribution of fluid and Brownian particle, as a pair of coupled equa
tions for the distribution function of the Brownian particle / and the conditional distribution of the fluid 
P = (ji/f). The equation for P is then solved formally in a perturbation series in the square root of the mass 
ratio (m/M), which is then substituted in the equation for / to obtain a collision term 5/ representing the 
effect of the fluid on / . We consider two situations: (1) A constant external force acts on the Brownian 
particle and / is stationary, the external force being balanced by 5/, and (2) a general time-dependent / . 
We find in both cases, as expected, that to lowest order 5f has the form of a Fokker-Planck type collision 
term, though in the second case this only holds for times much larger than the fluid relaxation time after 
an initial time at which /x is arbitrary. The next order terms in df differ for the two cases. Furthermore, 
because of the limitations on the times at which 5 / is valid in the second case, /(/) does not really obey a 
Markofnan equation to this order when the initial state is arbitrary. In the Appendixes we consider the 
formal structure of 5/, the form of / in the stationary case, a "quasistochastic" model of Brownian motion, 
the motion of a composite Brownian particle, and the motion of a Brownian particle in a crystal. The latter 
makes contact with the work of Hemmer and Rubin. 

I. INTRODUCTION 

THE explanation of "Brownian motion" by 
Einstein and Smoluchowsky1,2 in terms of the 

kinetic theory and their quantitative prediction of its 
features did much to establish the molecular theory of 
matter. A more complete description of Brownian 
motion was given later by Langevin and others.2 Since 
the dynamics of the motion of the fluid atoms, which 
cause the Brownian motion in the heavier, micro
scopically visible, particles was not introduced ex
plicitly, their effect could only be represented sche
matically. Thus, all descriptions of Brownian motion 
were of a stochastic nature ab initio. Despite this 
indeterminacy in the motion of an individual Brownian 

* This study was supported by the U. S. Air Force Ofhce of 
Scientific Research Grant No. 62-64 and the National Aeronautic 
Space Agency, Grant No. NSG 227-62. 

t Present address: Department of Aeronautics and Astro
nautics, New York University, University Heights, New York, 
53, New York. 

1 Albert Einstein, Investigations on the Theory of the Brownian 
Movement, edited with notes by R. Furth (Dover Publications, 
Inc., New York, 1956). 

2 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943); this article 
gives a complete review of the theory of Brownian motion and 
contains references to earlier work. 

particle (B particle), it is still possible when there are a 
very large number of such particles to give a deter
ministic equation for the time evolution of their spatial 
and velocity distribution /(R,V,/). Here f(Ry,t)dRtTV 
represents the fraction of B particles in the macro-
scopically very small volume element dRdY which is 
sufficiently large though to contain many particles. 
As is well known, it is more convenient mathematically 
to work in terms of an ensemble of systems each con
taining one B particle (since we are assuming that in 
the real system the B particles move independently) 
with the distribution function defined in terms of 
probabilities, assumed to satisfy the same equation as 
the "coarse-grained" / defined above.3 

When use is made, in devising the stochastic proper
ties of the interaction between the fluid and B particles, 
of the central fact that the heavy mass of the B particles 
makes the fractional change in their velocities small 
(on a molecular time scale) and results also in their 

8 H . Grad, in Encyclopedia of Physics, edited by S. Flugge 
(Springer-Verlag, Berlin, 1958) ,# Vol. XII, p. 205. H. Mori, I. 
Oppenheim, and J. Ross, in Studies in Statistical Mechanics, edited 
by J. de Boer and G. Uhlenbeck (North-Holland Publishing 
Company, Amsterdam, 1962). 
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moving (on the average) at speeds far below those of 
the fluid molecules, there results the well-known 
Fokker-Planck equation for jf(R,V,0,2,4 

df(R,V,t) df 1 df 

dt dR M dY 

Here X is the external force acting on the B particle, 
M its mass; f is the friction and D the diffusion constant 
in velocity space, of the B particles in the fluid. We 
have eliminated the friction constants f from the second 
part of this equation through use of the Einstein 
relation,2 

D=(kT/M)$. (1.2) 

/o is the equilibrium distribution function of the B 
particles whose velocity part goes as e~^Mv2; fi= {kT)~l 

is the reciprocal of the temperature of the host fluid. 
The right side of (1.1) represents the effect of the fluid 
on the B particles. It is a special case of a collision term 
which will be generally denoted by df. 

The purpose of this note is to dispense with the 
a priori introduction of a stochastic interaction. We 
shall, therefore, start with the Liouville equation for 
the distribution function /z of the whole system con
sisting of host fluid and B particle. A transport equation 
for / will then result, after integration over the 
variables of the fluid particles, in certain limits involving 
the size of the fluid and the time scale. Such limits are 
clearly necessary to derive an irreversible transport 
equation from a reversible Liouville equation and have 
been discussed extensively in the recent literature on 
irreversible processes.5,6 

The equation that we shall arrive at for / will be of 
the same form as (1.1) to the lowest order in mass ratio 
of fluid and B particle with an explicit, if unevaluated, 
molecular expression for D. We shall, however, also 
find higher order correction terms to (1.1). These higher 
order terms have relevance to the Kirkwood theory of 
liquids7,8 which uses the Fokker-Planck equation to 
describe the time evolution of the low-order distribution 
functions of a liquid. We shall also consider the case 
where the B particle has internal structure. 

4 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945). 

5 L . Van Hove, Physica 21, 517, 901 # (1955) ;# 22, 343 (1956); 
23, 441 (1957); I. Prigogine, Nonequilibrium Statistical Mechanics•, 
(Interscience Publishers Inc., New York, 1962). E. Montr oil, 
Suppl. Nuovo Cimento 16, (1960). 

6 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957). 
7 J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946); J. Ross, ibid. 

24, 375 (1956). 
8 J. L. Lebowitz, H. L. Frisch, and E. Helfand, Phys. Fluids 3, 

1 (1960). 

We shall consider first the case where the B particle 
is subject to some external force, such as a constant 
electric field E, which does not act on the fluid particles. 
This will enable us to look at the equation satisfied by 
the stationary nonequilibrium distribution / , to terms 
linear in E. This distribution represents a balance 
between the effect of the acceleration by E and the 
scattering by the fluid particles. It will thus contain 
the collision term representing the effect of the fluid 
but will avoid some of the difficulties encountered in 
deriving the general time-dependent equation for /,6,9 

Our method here will be similar to that developed by 
Kohn and Luttinger6 for deriving the quantum trans
port equation of an electron moving in the field of 
stationary impurities. Discussion of the collision term 
for the time-dependent case will be left for Sec. V. 

II. GENERAL FORMULATION 

The Hamiltonian of our system, consisting of host 
fluid and B particle, exclusive of the external field, will 
have the form 

= H1+Hl+U; R,-=r t-R, (2.1) 

where r; and v» are the position and velocity of the ith 
fluid particle. The three terms in H are, respectively, 
the kinetic energy of the B particle, the Hamiltonian 
of the TV fluid particles (of unit mass), and the inter
action between them. The whole system is enclosed in 
a periodic box of volume 12. The joint distribution 
function of the whole system will obey the Liouville 
equation 

(a/i(^,/)/ao+0*,H)+jf-1E-(d/i/dV)=o, (2.2) 
where (ji,H) is the Poisson bracket between n and H 
(expressed in terms of the velocity variables) and we 
have used x and y as abbreviations, 

x= (R,V), y= fa,- • - r^vr • -v^). (2.3) 

Since we want to consider only terms which are linear 
in E, we write 

M=MO+M', (2.4) 

where 

M o = = Z - V ^ , Z= hre*dxdy, 

and // is linear in E. \i will satisfy the equation 

(aM
,/^)+(M ,^)-/3E.VMo=0. (2.5) 

The distribution function of the Z?-particle / , nor
malized to unity, is given by 

/= \vh=h+r- (2-6) 
9 1 . Prigogine and P. Resibois, Conference on Irreversible Ther

modynamics held at Brown University in 1962 (unpublished). 
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Since we are dealing with a uniform system, / will be 
independent of R, and will contain a normalization 
factor Q-1, 

/ = O - i [ p 0 ( V ) + ^ ( V ) ] , (2.7) 

where (po+\p) is the velocity distribution of the B 
particle, 

Po=(2wkT/M)-'/2e~^Mv2, 

where Eq. (2.10) has been used to eliminate the field 
term from above. Now from (2.13) 

and 

1 d 
(lnPo,ff)=j8F-V= F lnpo 

M dV 

\P=tt hi'dy= hx'dydR. 

Integrating Eq. (2.5) over y and R yields 

•(J»<FdydR\, 
drP 1 d 

/ 3E .V P o = 
dt M dV 

where 
3U AT du(Ri) 

F= =E 
dR <-i dRi 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

/ 
P$dy=0. 

(2.18) 

(2.19) 

Dividing (2.17) by \f/ and writing out explicitly some 
of the Poisson bracket expressions, we finally find 

d \m// drj 
fi

at dt 
<n9B2)-

l a 

M dW 
ln(*/p0)-F 

I t is clearly the right side of (2.10) which will become 
the collision term, 5\p. 

We introduce now the conditional distribution 
function P(x,y,t) which gives the probability density 
of finding the fluid at y given that the B particle is at x, 

where 

I r a d -i 

MldY avJ 

L ciR \ dR/J 

<...>= jp0.-.dy, 

(2.20) 

»(x,y,t) 
P(x,y,t) = -——=P0(1+S) 

where 

i V 

f(x,t) 

lxo(x,y) e-1"1 

/o 

/ 

(2.12) 

= Ce-w+u\ (2.13) 

and Hi is the Hamiltonian of the fluid in the presence 
of a fixed B particle which thus serves as a source of 
external potential, 

H2=H,(y)+2u(r~R), (2.21) 

e-fdy 

and C is a constant for the uniform system. We also 
define 

P O ( 1 + I » ) = -= • (2.14) 

fv'dy 

From normalization we find 

Pody= 1, 

with R treated as a constant number (not a canonical 
coordinate). The Poisson bracket (ri,Hi) in Eq. (2.20) 
thus contains derivatives only with respect to the fluid 
variables (r$-,v»). Use has also been made here of the 
relation 

V- [po—dy^-pV- [poFrjdy. (2.22) 
J dR J 

Had we kept the term Y-drj/dR on the left side of 
(2.20), H2 would have corresponded to the Hamiltonian 
of a fluid with a uniformly moving Brownian particle 
in it. We may now rewrite Eq. (2.10) in our new 
notation, 

/ 
Poydy=0. 

Substituting (2.14) into (2.5) yields 

d\p drj 

dt dt 
1 d 

-t(V+l)(\nP0,H)+-
MdV 

(2.15) 

(2.16) 

# 1 d 
/3E.Vp0= -«(*<Fu». 

dt M d\ 

III. STATIONARY DISTRIBUTIONS 

(2.100 

(j»>¥dydR\ , (247) 

The set of coupled equations (2.20) and (2.10') for 
xf/ and r], which describe the linear deviation of ix from 
Mo, caused by E, are completely general. We would like 
to specialize these equations now to find the final 
steady-state value of \p in the presence of a constant E. 
I t is clear that in order to get a "sensible" result we 
will have to eliminate effects coming from the finiteness 
of the system. The latter effects will be of 0(N-l^)3 
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for any fixed time interval, and can be formally elimi
nated by going to the limit of N —* oo, 0 —> o>, N/Q=n, 
remaining constant. In this limit rj would become a 
function of infinitely many variables. We are, however, 
not interested in 77 itself, but rather in its integral which 
appears in (2.10'), which we expect to approach a value 
dependent only on n. Thus, in order to get a transport 
equation for \p, we shall somehow have to solve for rj 
(formally at least) before going to the limit of an 
infinite system, substitute that in (2.10'), and then go 
to this limit. In order not to get any spurious volume-
dependent terms which would disappear later anyway, 
we will have to consider carefully the times at which 
we look at the system after some initial time at which 
the system was in equilibrium. 

There are two, essentially equivalent, formal ways 
of setting up the steady-state problem in a way con
sistent with the conditions discussed above. These 
forms were discussed by Kohn and Luttinger6 and we 
shall adopt their methods here. One is to consider the 
electric field to rise adiabatically from zero at / = — <», 
to its final value E at t=0. 

E(0 = « , / I0E, * < 0 . (3.1) 

If the system was in equilibrium at t= — <*>, 
/*(— oo)=ju0? we would expect / / to have a time de
pendence of the same form as E, 

n'(x,yit) = etlt<>n'(x,y), t<0 (3.2) 

where we have kept the symbol / / for the time-
independent distribution. I t follows from the definition 
of \p and rj that \p will have the same time dependence 
as \J!x and 77 will be time-independent. Equations (2.10') 
and (2.20) would then become for / < 0 , 

* /*o-0E- Vp0= -M~^(d/d\) • WJPri)), (3.3) 

[~+iL\=M-1A'F+M-1B'l¥r1-(f7j)^ 

-['•5-'-<S>]- ** 
where L is the Hermitian operator, 

* £ ( . - • ) = ( ( • • • ) , * . ) , (3.5) 

d $ 
A - In — , 

dV po 
(3.6) 

r d yp a i 
B . ( . . . ) = — I n — h — • ( . . . ) . 

Lav po dVJ 

Now if to is chosen so as to be large compared to the 
relaxation time of the ^-particle tr, then \p/to is very 
small compared to the right side of (3.3); the term 
xp/to may then be neglected and \p treated as a function 
independent of to where it appears in (3.4). On the 

other hand, we may not, for reasons discussed above, 
let to go to infinity in Eq. (3,4), Rather we must have, 
as we shall see later, to small compared to the time ts 

which it takes a particle to cross the whole container, 
ts^ti11*; we solve for 77, substitute 77 in (77F), then first 
let N and Q—> 00, and then let to--> °°. 

An alternative formulation of the problem (see Ref. 
6, Appendix 3) is to consider the system to be in 
equilibrium at / = 0 when the full electric field E is 
turned on. We now consider the Laplace average of the 
distribution n(t), 

1 rw 

fl(to)=- / e~««>ii(t)dt=po+pi'(fo), (3.7) 
to Jo 

and define the function 77 by the relation 

fi'=(m)Po(l+v), (3.8) 
where 

^ = _ J e-tn^(t)dt. (3.9) 
toJo 

The functions \p and 7} then obey the set of Eqs. (3.3) 
and (3.4) with <• • •>-*<• • -)av [see (3.12)], and we 
may drop the bars and tildes. I t is seen now that the 
neglect of the term yp/to on the left side of (3.3), for 
to2>try is equivalent to saying that for such values of 
to the right side of (3.9) is equal to the final stationary 
value of \p, which is what we want. We also see that 
we will get the same value for 77 if we replace rj/to in 
(3.4) by drj/dt, solve for 77 as a function of t with the 
initial condition 77 = 0 at 2=0, and then take its Laplace 
average, treating \p as a time-independent function 
throughout. Equations (3.3) and (3.4) now become 

- 0 E . VP0= -M-*(d/dV) • GftFiy>av), (3.10) 

dr] 
—+iLrJ = M-1A-¥+M-1B-{Jy-(Fr1)&v'] 
dt 

-rvii-T./i!) 1, an, 
where 

< • • • > « = / - / " *-«/«••••*) = - / " e-l/to(---)dt,(3.12) 
V0./0 ' Awo 

and the initial condition is 77 = 0 at t=0. Equations 
(3.10)-(3.11) are then essentially equivalent to Eqs. 
(2.17) and (2.10') if the time variation of \p is neglected 
there on the basis that for £2>tr, ^ has already achieved 
its stationary value. For the quantities whose average 
we will be interested in, it will be possible in (3.12) to 
go to the limit of an infinite system, with to fixed, then 
for toS>tr the averages will be independent of to and we 
can go to the limit to —> °° making (• • . ) a v=(* • •). 

All our considerations so far have been completely 
general, assuming only the existence of a stationary \p. 
In principle, we could now solve (3.11) for 77, which 
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would be a functional of \f/y substitute that into (3.10), 
and obtain the desired solution. But this is no more 
than saying that given the Hamiltonian the time 
evolution of any system is solved in principle. What we 
desire is an explicit equation for ^ which will contain 
as few as possible parameters depending on the fluid. 
The form of \f/ will then be determined even if these 
parameters cannot be computed exactly on a theoretical 
basis. Knowing the form of \p will also tell us how these 
parameters may be determined experimentally from 
the properties of the steady state. For this to be the 
case, we need some iteration procedure for solving the 
above equations. When the interaction between the B 
particle and the fluid is weak, an expansion in F is 
appropriate. This would lead to a generalized form of 
the Kohn-Luttinger procedure (classically). We shall 
consider that separately.10 Here we are interested in an 
expansion in if_1<<Cl. To accomplish this, we shall 
scale the velocity of the B particle to its root mean 
square speed in equilibrium (/3M)~1/2, i.e., we shall 
treat V as of order M~112 in the ensuing expansion. This 
will give us the correct result for the most important 
part of the distribution function which is the part for 
which linearization in E is useful. I t will, however, not 
necessarily tell us correctly the behavior of very fast 
B particles. We shall investigate this further later. 

Introducing now the velocity v, 

V = v / v / M ' = 7 V , y2=M~\ (3.13) 

When these T?'S are substituted in (3.14), we get suc
cessive approximations to the equation satisfied by ^ . 
The time-dependent solution rji(t) of (4.2) may be 
written in the form 

i h W - - f «r**<*-«'>F(R,r)A'—ln(—) 
Jo dy \po/ 

= - f e - i L f l F ( R , r ) ^ r — l n ( - ) . 
Jo dv \ p 0 / 

into Eqs. (3.10)-(3.11) yields 

-jSE- vp0(v)= (d/dv) • GKv)<Fi7>av) > (3-14) 

(dt,/dt)+iLn=yA(y)>F+yT(v)ri, (3.15) 

where 

r ( v ) i , = B ( v ) . [ T i , - < F , > ] - r v ~ - - / v ~ \ l , (3.16) 
L aR \ d R / J 

P0(v)=(2w/l3)-*/2e~^2. (3.17) 

IV. EXPANSION IN POWERS OF y 

I t is seen from Eqs. (3.14)-(3.15) that, for small 
values of 7, rj will be*of order 7, while \p will go as 7-"1. 
We therefore write rj as a power series in 7, 

i? = 7*h+72*?2-| . (4.1) 

The rn will satisfy the equations,108, 

( < W ^ ) + ^ i = A ( * ) - F , 

(drij/dti+iLn^TrH-!, j>l. (4.2) 

10 See also R. Brout, Physica 23, 959 (1957). R. W. Zwanzig, 
Phys. Fluids 2, 12 (1958); I. Prigogine and M. Toda, Mol. Phys. 
1, 48 (1958). 

10* Note added in proof. The 77/ will themselves also be dependent 
on 7, due to the dependence of A and Y on 7, ijy = iy°+7i7y(1H , 
but this will come out in the final form of 5^ and doesn't have to 
be written out explicitly. 

(4.3) 

Now eiLt is the translation operator in the phase space 
of the fluid, whose motion is governed by the 
Hamiltonian #2, 

eiLtg(x,y) = g(x,y(t)), (4.4) 

where y(t) = yt(y,t; R) is the phase-space point to which 
the point y will have moved, under the influence of 
the Hamiltonian H2, during the time interval /. # 2 is 
the Hamiltonian of the fluid particles in the field of a 
fixed B particle and contains R a s a parameter. Thus, 

i?i(Os 

where 

d 

\po/ Jo 
F(-0^, (4.5) 

F ( - 0 = F ( R , r ( - 0 ) = Z ' — « ( r , ( - 0 - R ) . (4.6) 
«-i dR 

The expectation value (Fry) will be given to lowest 
order10a in 7, for to —» °°, 

(Fr?)av=—7 lim 
1 r r* ) 
- / dte-«'° <fti<FF(-/i)>] 
hJ 0 Jo > 

d /if 
— In 
dv \p0 , \ p o / 

-7 Hm I J dt(Tt/*(F¥(--t))\ — lnf—j 
*0-*oo 

= -7£> 

with 
dv \ p 0 / 

© = l i m [ e~t,t^(-t))dt 

- l i m / e-t/tQ(¥F(t))dt 
'o--00 Jo 

(4.7) 

I lim ^ * < F . F ( 0 > * B-*£>6, (4.8) 

where the second equality follows from the time re
versibility of the equations of motion and the last 
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equality follows from the isotropy of the fluid; 5 is the 
unit tensor. When (4.7) is substituted into (2.14), the 
right side will be recognized immediately as the usual 
Fokker-Planck equation, Eq. (1.1), with the diffusion 
tensor Dh (here a multiple of the unit tensor) defined 
in terms of the molecular variables,7'11 D=M~2<£). As 
mentioned before, the limit to —» °° is to be taken after 
the size of the system has been made infinitely large 
which itself is done after the ensemble average is taken. 

Proceeding in the same fashion yields 

y2(t) = / (riLt*m(t-h)dh 
Jo 

- / 
Jo 

dhe~iLt>Y\ I ¥(-h)dtvA\ . (4.9) 

Now P0 commutes with H2 and is thus a constant of 
the motion, 

e-itLFo=:p0t ( 4 # 1 0 ) 

Similar expressions will also hold for A and B which 
do not depend on R (but only on v). Equation (4.9) 
may, therefore, be written in the form 

i?»(0=/ dhl dh{F(-h-hW-h) 
J o Jo 

UR 

nt p(t—t2) r- ft 

I dhl dhe-^l—Fi-h) 
Jo Jo 

•<s*-*>]! Av. (4.11) 

When this expression for rj2 is substituted into (F772), 
the latter vanishes. This follows from consideration of 
the transformation of variables upon reflection of all 
the fluid particles through R and simultaneous reversal 
of their velocities, 

Ri=r;— R—> R—r/= • R/, -v/. (4.12) 

This transformation leaves Po unchanged, but changes 
F(—/) and (F772) into their negative. We may therefore 
conclude that (Fr)2) vanishes. The same will be true 
for all even terms (Fr}2i). 

The first correction to the Fokker-Planck equation 
will thus come, in a uniform system, from 773 which 

11 See also E. Helfand, Phys. Fluids,^, 1 (1961). For the general 
use of autocorrelation function expressions in irreversible processes 
see M. S. Green, J. Chem. Phys. 20, 1281 (1950) and the second 
reference in Ref. 3 and references cited there. 

12 R. W. Zwanzig, Lectures in Theoretical Physics (Interscience 
Publishers Inc., New York, 1961), Vol. 3, p. 106, 

will consist of four terms 

^ ( 0 = / dtze-iLt'Trj2(t-h) 
Jo 

= / dhl dhl dh a: 
Jo Jo Jo [ LdvdvdvJ 

LdvVdvW / J L dvdv J 

LdvVpo/ J U ' 
(4.13) 

where a, b, c, and d are third rank tensors which are 
independent of v, 

a=F(- / , - / , -* i )F(-*»-fc)F(-*s) 

-(F(-h-t2-h)¥(-h-h))F(-h), 

d / d 
\y—e-iL(l3+t!) bF(-",-<sF(-")»(fe)l' 
c—e r-"*\— [ F ( - ^ 2 - ^ ) F ( - / 2 ) ] 

IdR 

•(^[F(-^-<i)F(-/,)])j 

(4.14) 

d=g-iLt4—\e-iLt*—f(-h)\ 
\l aR J URL 

-/if. 
\CIRL '"i?(-h)])\ 

It is seen from (4.13) and (4.14) that when values of 
rji up to 773 are used in (3.14) the resulting equation will 
still be linear in \f/, albeit it will be of fourth order in 
the velocity gradients. Part of the terms coming from 
(F773) may be combined with those obtained previously 
from (Frji) to obtain again a Fokker-Planck equation 
with new values for the friction force and the diffusion 
tensor. The remaining terms lead to higher derivatives. 
More precisely, the term proportional to 73 on the right 
side of (3.14), which represents the effect of the fluid, 
may be written in the form 

1 1 
53^=V-(^3 ( 1 )^)+-V2 : (^3 ( 2V)+-V3 : (^3 ( 3¥) 

2! 3! 

+ -V 4 : ( ^3 ( 4 V). (4.15) 
4! 

Here V = d/dv; the superscript indicates the rank of 
the tensor and the subscript the power of 7 involved. 

file:///cIRL
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The velocity dependence of the A9s which is of 0(z>3) 
may be written out immediately in terms of the various 
tensor invariants since the only vestor available is v: 

4 8
( 1 ) = ( a i ( 1 ) + a 2 a V ) v , 

48(2) =a1(2)vv+ (a2
( 2V+a3

( 2 ))&, 

i 3
( 3 ) = 4 5 X v ] 8 , 

^ 3
( 4 ) = a 4 [ 5 X 5 ] s . 

(4.16) 

Here the a's are constants independent of v, 5 is the 
unit tensor of rank two, the cross indicates the direct 
product, and the subscript s indicates that the tensor 
be symmetrized in all indices. The numerical values of 
the a's and jff's are linear combinations of the time 
integrals of the expectation values of F times the tensors 
a, b, c and d appearing in (4.12). Thus, 

—a4= lim - / dt e~t/t0 / dt% \ dt2 J dh 

4 ! «>-*» [toJ0 Jo Jo Jo 

XL(Fx(-h)Fx(~t2)Fy(-h)Fy) 

-(Fx(-h)Fx{-h)){Fy{-h)Fy)-}, (4.17) 
where x, y stand for components of the vector {which 
are not summed over), X9^y. 

V. TIME-DEPENDENT DISTRIBUTIONS 

We now come to a discussion of the effect of the 
fluid on the time evolution of f(R,Y,t). In the absence 
of time-dependent forces, we expect that starting from 
an arbitrary initial state /(R,V,0), collisions with fluid 
particles will cause f(t) to approach, as /—* °o? a 
stationary value. There will be some changes, however, 
in the form of the collision term 8f, when / is a function 
of t; therefore, it differs from that arrived at in the last 
section for a stationary / . This will come from the fact 
that, as / keeps changing with time, the distribution 
of the fluid is not able to adjust itself to the instan
taneous / ( / ) , as it does when / is stationary, but 
depends on the value of f(tf) over a time interval r, 
the liquid relaxation time, prior to t. I t is only when r 
is small on the time scale in which / changes appreciably 
that a Markoffian transport equation in which the 
df(t)/dt depends only on f(t) itself is possible. In our 
case r is essentially the time interval over which 
(FF(/)) is significantly different from zero, while 
(d ln / /d / ) - 1 will be of order tr=£~1/^y~2T for a uniform 
system, jf(R,V,/) = /(V,tf), in which V^y. When / has a 
slowly varying spatial dependence it is possible for the 
system to come to a "quasistationary" state in which 
fit) will be a "normal distribution" whose rate of change 
will be determined by the hydrodynamic equations and 
may be made very small.4,8 In either case, there will be 
corrections to the collision term 8f appropriate for a 
stationary distribution of order [Y(d \nf/dt)~]8f. For 

the uniform case, these corrections will start as yz, 
while in the quasistationary state they may be neglected 
to lowest order in the density gradient. In addition to 
these changes in 8fy it is clear from the above discussion 
that for t< r there will be no 8f which can represent 
the effect of the fluid in terms of / , since for such times 
the fluid distribution will depend on its initial value at 
/ = 0 , which is independent of / . 

Let us consider first the spatially uniform case in the 
absence of an external field, where JJL is only a function 
of R; and r# and / i s thus independent of R, / = / ( V , / ) . 
The ensemble density n(x,yyt) will satisfy Eq. (2.2) 
with E—0. Defining the conditional distribution 
P = J P 0 ( 1 + £ ) as in (2.12), we find the following coupled 
equations for / and £: 

df(y,t)/dt=-y(d/dv) •(/&)), (5.1) 

(dZ/dt)+iLZ=yk-¥+yrt- (d lnf/dt)£. (5.2) 

L, A, and r are the functions denned in Sec. I l l except 
that / and /o replace \j/ and p0 there. 

Proceeding as before with an expansion of £ and 
df/dt in powers of y, we obtain to lowest order in y, 

df(y,t) d 

=-v-VM(.x,y-tM) 
dt d\ 

+ T 2 . 
dv 

fj dthfF(-h)) 

a / / ( * - Q \ - | ] 
(5.4) 

We shall assume that £(x,yfi) is a function only of the 
fa and R* and that its dependence on R* is significant 
only for Ri in the range of F, i.e., the fluid is homo
geneous away from the B particle. Thus, when £$>T 
the first term will be (presumably) exponentially small 
and the integration in the second term may be extended 
to infinity with an error of order exp[— t/r]. Also 
f(t—ti) may be expanded in a Taylor series about t. 
This yields again to lowest order in y the Fokker-
Planck equation 

3/(v,0 dr d / / > 
= 722>H / — l n ( - ) l + 0 ( * - « ' " 

dvl_ dv \ / o /J 

= 72Si/+0(e-"*). 

) 

(5.5) 

[The transition from (5.4) to (5.5) can also be accom
plished by introducing formally the variable s=y~Hf 

then going to the limit y —» 0, s remaining fixed.5*12] 
To obtain further terms in 8f we will have to take 

into account terms coming from the expansion of 
f(t—h) in (5.4) in addition to the terms obtained 
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previously for the stationary state. Thus, to order 74, 

df(y,t) 

be the equilibrium state, 

dt 
-y2hf+y%f 

dv /o/ 

+0(.tr'"), (5.6) 

where £3/ is given by (4.15), with / replacing \p and 
(for normalization) f0 replacing p0. The last term is the 
new one and S is defined as 

•-f 
Jo 

s(W(-s))ds= (1/3) / (F.?(-s))ds 5. (5.7) 

The integration in (5.7) has been extended to infinity 
on the assumption that this, like the transition from 
(5.4) to (5.5), produces an error of order e~t/T. We must 
remember, however, that if we want to integrate equa
tion (5.6) to obtain / ( / ) , for times of order tr^y~2r, 
starting from some initial /(v,0), then the terms which 
are of order e~t/r will also make contributions of order 7. 
Hence, if the collision terms are taken to order 74 we 
must not neglect these terms either. The evaluation of 
these terms though unfortunately requires a knowledge 
of £ at t= 0. Thus, unless / i s known at some time /, O r , 
i.e., at a time when the fluid distribution has already 
had a chance to adjust itself to / , the transport equation 
giving the effect of the fluid in terms of a time-inde
pendent collision operator 8f is only useful to lowest 
order in 7. 

When the distribution of B particles is not restricted 
to be uniform and we allow also the possibility that 
there is an external force X acting on them, the equation 
for /(R,V,/) will have the form 

3 / df df d 
- + 7 V ~ + T X ~ = T — (f<J?&) > (5-8) 
dt dR dv dv 

and the equation for £ will remain the same as (5.2). 
An expansion in 7 will yield to lowest order, 

df df df 
h7V I-TX = 

dt dR dv 
-r—(f(m*,y-tfl))) 

dv 

+72— /( 
dv ./;4--<F~)])- (5.9) 

When the dependence of £(#,y,0) on R* is limited to the 
vicinity of the B particle, R ^ O , the first term will 
again vanish for £» r . Similarly, the integration can be 
extended to infinity for £$>T and the integrand expanded 
about / to yield Eq. (1.1) to lowest order in 7. 

When X is derivable from an external potential 
$(R) , X= — <9<i>/dR, then the final stationary state will 

lim / (R ,V,0- /o«C«rW*>p o (v ) , 
fr-»oo 

(5.10) 

where C is a normalization constant. (The requirement 
X= — <9$/dR excludes constant fields in a periodic box.) 
Now since the collision term does not affect the density 
n(R,t) at all, there will be a new time scale T, for changes 
in n, determined by the density gradient and X (which 
we shall treat as quantities of the same order). When 
T^>tr there will develop for £S>tr a hydrodynamic 
domain in which / is a function of n, i.e., / will be a 
normal distribution /(R,V,0 = /(V,»(R,*)).4«8 The solu
tion for / will then have the form of the Enskog solu
tions to the Boltzmann equation (though here n is the 
only conserved quantity), 

The lowest order term in this solution is 

/ °=«(R,OPO(V) , 

(5.11) 

(5.12) 

while fU) will be proportional to the jth. power of the 
density gradient (again X is treated as of the same order 
as dn/dR). If we are interested in / (1 ) , to all orders in 7, 
then f(t—h) in (5.9) may be replaced by f(t) and, in 
general, 8f will have the same form as it has for the 
stationary state discussed in Sec. IV.9 

VI. DISCUSSION 

We have shown in this paper that the effect of the 
fluid on the distribution function of heavy particles, 
of mass My and small velocities, V^M~1/2, may be 
described to lowest order in M_ 1 , by a Fokker-Planck 
type collision term with a friction constant f defined 
in terms of molecular variables, 

;=M-^f <F. 
Jo 

V(-t))dt. (6.1) 

In order for this to exist we must go to the limit N —» 00, 
0 —> 00 7 N/Q constant, before extending the integration 
to infinity. This expression is to be compared, when 
applicable, with the hydrodynamic expression for the 
friction coefficient of a sphere of radius a, Stokes' law,13 

^=M~167rrjay (6.2) 

where 77 is the viscosity of the fluid. For the hydro-
dynamic expression to be valid cr has to be much greater 
than the mean free path of the fluid particles (it is 
thus not valid for the Rayleigh model in which a 
sphere moves through a gas of noninteracting 
particles14). 

13 g e e Ref. 1 note 6. 
14 J. L. Lebowitz, Phys. Rev. 114, 1192 (1959), and references 

cited there. 
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In order to compare (6.1) with (6.2), it is convenient 
to define a relaxation time r by the relation 

F 
Jo 

< F . F ( - / ) ) * = T < F . F ) . (6.3) 

After some manipulation the average value of (F2) may 
be put in the form 

(F2) = 47rr1P / G(i?)[VR
2tf(£)]i^R, (6.4) --I 

Jo 
where p is the density of fluid particles and G(R) is the 
radial distribution function between the B particle 
and a fluid particle, i.e., pG(R) is the density of fluid 
particles a distance R from the B particle. 

The "size" a of the B particle enters into our analysis 
through the dependence of U(Ri) on a. If we assume 
that U(Ri,a)=U(Ri/a) (an unlikely situation for true 
Brownian particles), then (6.4) becomes 

( P ) = 4TT/3-] 

/»0O 

J 0 
a)V2U(z)z2dz, (6.5) 

where we have introduced the dimensionless variable 
z—R/cr. Comparison of (6.2) with (6.3) and (6.5) yields 
for r, 

r = M pG(z,a)V2U(zydz 1 . (6.6) 

We generally expect G(z,a) to depend only weakly on 
(7. When p is small, i.e., in a gas, G^e~^u(^z\ and 
rj^pCl, where C is the mean speed and I the mean 
free path.15 Thus, in this case, 

\(- J i 

18 

> 
-WV^UzHz (6.7) 

where TC=1/C is the mean time between collisions of 
gas particles. The difference between r and rc may 
perhaps be understood by considering that the density 
of gas particles and, hence, rc is changed in the vicinity 
of the B particle and also that the correlation of F 
persists for more than one mean collision time. 

The scaling of the potential with <r as U(Ri/a) is 
appropriate for an atom and might be useful for dis
cussing the motion of a neon atom in helium for example 
(though in this case Stokes' law would certainly not 
apply). In a true Brownian particle (i.e., colloidial 
particles of size ~50ju/z or larger1'2), the potential U(Ri) 
is more likely to be of the form U(Ri~cr), becoming 

15 S. Chapman and T. G. Cowling, The Mathematical Theory of 
Nonuniform Gases. (Cambridge University Press, New York, 
1958). 

rapidly infinite for negative values of Ri—a and zero 
for positive values of Ri—a. In the limit in which U 
becomes a step function at Ri~<r, i.e., the B particle 
is a hard sphere of radius <r, it might be possible to use 
quasihydrodynamic methods, i.e., a fluctuating pressure 
tensor,16 to evaluate (6.1). We are currently considering 
this as well as "many-body" diagram techniques for 
the evaluation of the force auto-correlation function. 
(Its evaluation in a one-dimensional crystal is presented 
in Appendix E.) 

We may note here that the expression for the average 
force acting on the B particle, Fav=(F£), which is 
central in the derivation of the Fokker-Planck equation, 
can be put in the interesting form [cf. Eqs. (4.7) and 
(5.4)] 

D 6 rd n 
Fav(p) = [S(p)-S0(p)]~ - p , (6.8) 

k dp Ldt Jav 

where p=AfV is the momentum of the B particle and 

S(p) = -Hn/ (p ,R) (6.9) 

is a kind of entropy density in the phase space of the 
B particle whose average value is the usual entropy. 
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APPENDIX A: FORMAL STRUCTURE 
OF THE COLLISION TERM 

According to the analysis of this paper, the effect of 
the fluid on the distribution of B particles may be 
represented in some cases to all orders in y, in the form 

S/=Ev,«'[A(»'(y)/], (Al) 

where A(n) is an nth rank tensor independent of / . The 
right side of (Al) may be formally replaced by an 
integral operator acting on /,14,17 

5 / = J [ ^ ( v , v O / K R , 0 - ^ ( v ' , v ) / ( v , R , / ) ] ^ . (A2) 

The A(n) are related to K by the relations, 

A<*>(v)= ( -1 ) " / K(\\y)(\f-y)nd\f 

*(-l)*/ir(z;v)z»<fe, (A3) 

16 L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon 
Press, Inc., New York, 1959), Chap. 17. 

17 H. A. Kramers, Physica 7, 284 (1940); J. Keilson and J. E. 
Storer, Quart. Appl. Math. 10, 243 (1952). 
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and we have set 

K(Y'-Y;Y) = K(Y',Y). (A4) 

The function K is not uniquely determined by (Al) 
or (A2). This corresponds to the fact that A (0 ) does 
not appear in (Al), or equivalently that we can modify 
K(Y',Y) by adding to it an arbitrary function, 

X ( v » = i T ( v » + g ( v ) 5 ( v - v O , (A5) 

without changing (A2). Choosing A (0 )(v) arbitrarily 
for the moment, we may write 

K(Y',Y)= (2TT)-3 /dk[e^ ' -v ) -] 

X 
Lw==o n\ 

(v) (A6) 

Alternatively, we may first use the A(k\ k^n, to find 
the value of the integral of the nth. Hermite polynomial 
H(n\ which is an nth rank tensor,18 

£<*>= K(z':v)HM(z)dz. (A7) 

The H(n)(z) are orthogonal with a weight factor po(z), 
po(2)=(27r)-3/V zV2 

I H^(z)H^(z)p0(z)dz=n\8ni. (A8) 

We thus have 

K{%\ Y) = 2-B^(Y)PO(Z)HW(Z) , (A9) 

with 
2 = 0 ^ ( v ' - v ) . (A10) 

The right side of (A2) has the structure of the usual 
linear transport equation when K{y'yY)dyr is the tran
sition probability per unit time from v to d\'. That 
such an interpretation of the K constructed here be 
possible, it is necessary first, that the series (A6) or 
(A9) converge, and, in addition, it is also necessary that 
K be non-negative for all values of its agruments. This 
requirement on K sets up conditions on our choice of 
A(0)(z>) which it may or may not be possible to meet. 
The further requirement that K(Y,Y') not contain 
5(v—v') insures that the choice of A (0 ) , if at all possible, 
will be unique. If such a K can be found it will have 
the features of a stochastic kernel representing the 
effect of a heat bath, here the fluid, on the B particle.14 

The distribution / will then satisfy some kind of H 
theorem which would assure the approach of / to a 
stationary state. As is well known, when 8f is taken to 
lowest order in 7, i.e., the Fokker-Planck term, then / 
also satisfies an H theorem. We have not investigated 

whether there exists such an H theorem when the series 
for 8f is terminated at some higher power of 7.19 

APPENDIX B: STATIONARY SOLUTION OF t£ 

In order to get the form of the steady state yp to the 
order in 7 that we have been considering in Sec. IV, we 
write Eq. (3.14) in the form 

~/3E. vpo(v) = 7 5 ^ + 7 % ^ + • -

and write \p as an expansion in 7, 

(Bl) 

(B2) 

When (B2) is substituted into (Bl) and equal powers 
of 7 are equated, we obtain 

S^i=£)— M-i— l n ( - ) ] = -iSE-vpoO), (B3) 
dv L dv \po/J 

d f d / M i 
hipi=—Siip3= — T)— ^3—lnl — 1 

dv L dv \po/_ 

The solution of (B3) is8 

^1(v) = 3)-iE-vpo(v), 

or in terms of the velocity variable V: 

^i(V)=r1/SE-VPo(7)+o(7), 

• (B4) 

(BS) 

(B6) 

where f is the friction constant [cf. Eq. (1.2)], 
f=72£)/3 -1=/ r~

1. In order to evaluate the term ^ i , 
which is the inhomogeneous part of (B4), it is most 
convenient to look at (4.13) which already contains 
all the velocity dependence of 83. When \[/i is substituted 
into the curly bracket of (4.13) the term multiplying 
a and c is seen to vanish and the rest becomes 

S r ^ j E S + d i E v v ] . (B7) 

The collision term 53^i can then be written in the form 

53^i= ^ E . v p o ( v ) + ^ [ J ^ 2 - f ]E- vP 0(v), (B8) 

where VQ and v\ are two velocity-independent constants 
which can be expressed in terms of the force correlation 
functions. When (B8) is substituted in (B4) we obtain8 

^(v)=©-1h+|^i(^-f)]E.vPoW. 
The mean velocity of the B particles is 

(B9) 

<v>= / v^(V)^v=rVM(i+7v0)+o(74) 
= /?3rV(l+7%)+0(74). (BIO) 

APPENDIX C: QUASISTOCHASTIC MODEL 
OF BROWNIAN MOTION 

In this Appendix we shall consider a model which is 
midway between the usual model of Brownian motion, 
that of a stochastic force acting on the B particle, and 

18 H. Grad, Comm. Pure Appl. Math. 2, 325 (1949). 19 A. Siegel, J. Math. Phys. 1, 378 (1960). 
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the analysis in this paper, where the motion of the 
B particle and fluid are governed by a definite 
Hamiltonian. We shall assume that the B particle 
interacts via a definite potential with one fluid particle 
but represent the effect of the rest of the fluid on this 
particle in a stochastic fashion. This model is of interest 
to us because the distribution /(R,V,0 obeys equations 
formally similar to those developed in this paper with 
coefficients which may be evaluated explicitly in some 
cases. 

The Hamiltonian of the B particle and one fluid 
particle, which together we shall call the system, has 
the form 

H^MV+W+UiH-i!), (CI) 

where we have again set the mass of the fluid particle 
equal to unity. The joint distribution of B particle and 
fluid particle /x(R,V,ri,Vi,0 will now obey a generalized 
Liouville equation which will take into account the 
effect of the rest of the fluid, the "reservoir," on the 
system,14'20 

<fy df 

dt dV 

= J [^(r1 ,v1 ,r/ ,v/,R,V)M(R,V,r1 ' ,v/ J0 

- ^ ( r ^ v ^ r ^ ^ R ^ W R ^ r ^ ^ ) ] ^ ^ ! ' . (C2) 

In writing down the stochastic kernel K we have used 
explicitly our assumption that the reservoir does not 
act directly on the B particle but only on the fluid 
particle interacting with it. The form of the potentials 
U and of the kernel K are still at our disposal and we 
shall choose these to be as simple as possible. For U 
we will take a harmonic potential, 

£ / ( | R - r 1 | ) = |cuo2(R-r1)2=|co0R1
2

? (C3) 

and K will be assumed to have a simple relaxational 
form 

J T f o v i / i y i A V ) = T - ^ R / W O . (C4) 

K tries to bring the conditional distribution of the 
fluid particle relative to the B particle, characterized 
by P , to its equilibrium value P 0 . I t does this with a 
characteristic time, the fluid relaxation time, r. The 
quantities P , P0 , and £ are defined as before, 

p=-=p0(l+*); 
/ 

f(Ri\it) = j^Ry\JThyljt)dtldy1, 

(C5) 

20 P. G. Bergmann and J. L. Lebowitz, Phys. Rev. 99, 578 
(1955); J. L. Lebowitz and P. G. Bergmann, Ann. Phys. (N.Y.) 
1, 1 (1957), J. L. Lebowitz and A. Shimony, Phys. Rev. 128, 1945 
(1962). 

Mo 
P o = - = -

/o 

-pH 

h *Hdndvi 
\ffwo/ 

(C6) 

Xexp{-jOvi2+W(R-ri)8]} > 

/o=o-Vo(V). 

An alternative interpretation of our model is that 
there is a probability per unit time, r"1, that the fluid 
particle which interacts with the B particle is removed 
and replaced by another particle from the fluid. The 
probability distribution of this new particle is given by 
Po. 

Equation (C2) now assumes the form 

dfx dn djjL dp 
—+V hvi +M~1¥ 
dt dR dtx dV 

dju djjL 
F KM^E 

dvi av 

-KPo-Pl/r 

= - P o / { / r , 

(C7) 

where, as before, 

F = - ^ t / / a R = c o o 2 ( r 1 - R ) = coo2Ri. (C8) 

We shall now again consider the stationary distri
bution to terms linear in E. I t is not necessary to worry 
here about the system size going to infinity since that 
has already been accomplished by introducing the 
time-independent stochastic kernel K.20 Consequently, 
it is also not necessary to introduce to, it may be con
sidered as infinite from the beginning. Introducing / / , 
\p, and ?7, as before, \[/ and t\ will obey a set of coupled 
equations similar to (3.14)-(3.15), 

- ^ 7 V - E p o ( v ) = - 7 ( ^ v ) - ( ^ ( v X F r ? ) ) , (C9) 

(d71/dt)+iL^yk(v)'¥+yT71-71/r. (CIO) 

The symbols have the same meaning here as before 
(though referring to one, rather than N fluid particles), 

drj drj 
iZi j (vi ,Ri ,0 = Vi w0

2Ri , 
d R i dvi 

(Cl l ) 

and we need the solution of (CIO) for /=oo . The 
dissipative nature of the fluid is now lumped together 
schematically in the term r"1^, i.e., it is the operator 
(iL+T*1) which " corresponds" to the operator iL used 
previously. Expanding r) as a power series in 7, we 
obtain as in (4.2), for / = 00 y 

m=-(d/dv)-\nty/p0) dse~s^F(-s). (C12) 

Due to the simplicity of the operator L we can find 
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here F(—/) explicitly. Indeed, 

^ - ^ ( r i - R J - r x C - O - R - H i C - O 
•» Ri cosa>o£— Vicao"*1 sincoo/, (C13) 

<r*L'vi=Vi(— /) = Vi coscoo/+co0Ri sinojo .̂ 

Thus, 

LpnJ 
1 7 1 = — 

rcoo2 d f\(/~ 
[ R x - r v ! ] — In 

1 + r W dv Lpo_ 
(C14) 

rcoo2^1 d 
(Pvi)= lnl 

1 + r W dv Lpo LpoJ dv LpnJ 

dv L dv \p0/J 

(C15) 

(C16) 

v / ( - s ) = v+7W*[(v1~7v)(l-cosw.y) 

-wRiSinwj] , (C21) 

where m* is the reduced mass, 

m*= (I+7)""*1 (since w = 1), (C22) 
and 

a>=uo(l+72)1/2 . (C23) 

I t can now be verified that 

^(v) = [7©]-1E-vPo(v)=^1(v) (C24) 

is a solution of Eqs. (C19)-(C20). 

We can also work out for this model more explicitly 
the form of 8f(\,t) for a uniform distribution in the 
absence of an external field, 

In a similar fashion we find 

coo2r8 

1*2(0 = 
(1+4COO2T2)(1+COOV) 

/Po\ d2 /xP\ 
X { r [ v i V i - ^ R i R J + V i R i } : ( - V - . (C17) 

\ ^ / d v d v \ p o / 

We see here that (F772) will vanish []cf. discussion 
following Eq. (4.11)]. The next order contribution to 
the collision term will come from (F773) and will be 

/ r W \ / 1 + 3 T W \ 
W= ( ) O^r)-1 

\ l + r W / \ l + 4 r W / 

-[>—(-) 
T L 3vdv \po / 

r/(v>°)i 
f W = -7TT k ( / T K v i ( - 0 , R i ( - 0 , v, 0) 

L f(v.t) J 

-/(v,0) 

- / ( v ,0 

dhe" 

and for O r , we find 

* / M T (^2r2)-1(coo2r2)2(l-coo2r2) 
-=Y 2 5i /+7 4 | «a/-

r/°i /•' ^ r/(^-Oi 
(C25) 

d< 

• 3 f d ' r 3 
X — / o - / o - 1 -

dv I dvl_ dv 

(1+cooV)3 

[*»] + 0 ( T 6 ) , (C26) 

d2 

X-
dv3v 

(C18) 
where 5J and 5 3 / are given by Eqs. (C16) and (C18). 
The relaxation time tr, which is the inverse of the 
friction constant f, is given in terms of r and o>0, 

We note here that the terms in (F773) corresponding to 
b and d in Eq. (4.14) do not appear here because, as 
seen from (C13), dF(—t)/dR is independent of R so 
that (Fb) and (Fd) vanish. This means that in an 
expansion of $ in powers of 7, according to the method 
of Appendix B, h^i and thus ^ 3 would be zero. The 
same will be true for all other \ph 1>1. This can be 
verified directly for we can solve Eq. (C7) for the 
stationary state to terms linear in E, without any 
expansion in 7, 

T f T2CO0 

7 2 L l + r2( 
(C27) 

dt 

1 r00 

p = fJ>o+n' = V>o\ H — / ds e~ 
r Jo 

\f/= I ft'dvidtidR, 

, (C19) 

(C20) 

where v'(—s) has the same meaning as v(— s) except 
that the motion now takes place under the influence 
of the whole Hamiltonian H, not just H2; i.e., the 
position of the B particle is not held fixed. We find 

I t is also possible for the model considered here, to 
write out more explicitly the exact equation satisfied 
by f(y,t), for an arbitrary F, 

df(v,t) - y d r> f 
- = • / ds e-i* \ P 0 (v 1 ,R 1 )F (R 1 ) 

r dv Jo J 

Xacp{-0[?-Y'*(-s)]}f(v'(-s),t-s)dR1dv1 

-g-tiry_. h^Vi'i-t), R i ' ( - 0 , v ' ( - 0 , 0) 
dv J 

XdRidvlt (C28) 
Br' f d 

= 7 - - / ds g-lr / FM0-C/(v'(-5), IS)/ 
dv J0 J ds 

fo(y'(-s)JdR1dvl+lye-1'^ 

X j — J F M O K V / ( - 0 , R I ' ( - 0 , V ' ( - < ) , 0) 

/(v(-0, o) „ 1 
X dRrfv! , 

/o(v'(-0) 1 
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where the definitions of v'i(— t) and R'1(—/) are similar 
to that of \'(—t) given following Eq. (C19) and have 
the value, for F given in (C8), 

v/(—S) = \i—W*[(Vi—7V)(l — COSOtf) 

- w R i s h W ] , (C29) 

R/("-"$) = Ri coscas+ar^yv—vj sincos. (C30) 

When (C21), (C29), and (C30) are substituted in 
(C28), there results an expression for df(v,t)/dt whose 
expansion in powers of 7 for O r we have obtained in 
(C26). 

APPENDIX D: COMPOSITE BROWNIAN PARTICLE 

In this Appendix we shall consider the case in which 
the B particles are not simply mass points, but have 
some structure. For simplicity of notation we restrict 
ourselves to B molecules composed of two equal simple 
particles, "B atoms," having mass M, M^>m and 
interacting via a potential <£. The distribution of the 
B molecules, assumed independent of each other, will 
be characterized by a distribution function / which is 
a function of the coordinates and velocities of both 
B atoms and the time t, 

/=M0=/(Rcl),RC2),Vo>,V<2>)/). (Dl) 

The Hamiltonian of the full system will have a form 
similar to that given in Eq. (2.1), 

H=H1 2+27H-E [ X R ^ + ^ R ; 2 ) ] , (D2) 

where Hi is the same as in (2.1) and 

R ^ = r r - R « , a = l , 2 . (D3) 

The joint distribution n will obey Eq. (2.2) (with 
E=0). The conditional distribution P is again denned 
by (2.12). However, unlike (2.13), P0 will now depend 
on R1*, 

Po=exp{-£[#*+tf-SK#1 2)]}, (D4) 
where 

r » - / g-eim+vjdy, (D5) 

It is seen from (D5) that ^ + $ is equal to 

(-/3-1) lnw2
0CR12)+constant, 

where n<P is the equilibrium value of the configurational 
distribution of the B particle. The equation for £ and 
/may be written in a form analogous to (5.2) and (5.8) 
by letting 9t and v stand for the six-dimensional position 
and reduced velocity vector of the B particle, 

(R;v)=(R1 ,R2;vV )) , 
v(«)= = / y-l /2V(«). 

We then have 

(#e0--r-(/<8*>), 
dt d\ 

(D7) 

d£ d In/ 
—+*Lf=7*-3f+7r* £. (D8) 
dt dt 

We have denned here an effective Z?-particle Hamil
tonian 3Ci, and an effective force ££, 

fH-(a/d«)[tf-£]. 

(D9) 

(D10) 

The "effective" force (six-dimensional), 3r, acting on 
the B molecule is the direct product of the effective 
forces gfi and $2 acting on the B atoms. Proceeding 
now according to our method in Sec. V we obtain, to 
lowest order in 7, a generalized Fokker-Planck equa
tion for / , 

df dr d 
+ (/,3Ci) = 7 2$C 6 )— I / — l n ( - Y | , (Dll) 

dt dvL d\ \ / o / J 

where &(6) is the six-dimensional tensor, 

$«> = lim f 
W o 

e-'Hmi-fydt- (D12) 

In writing down the equation for / we have neglected 
the term coming from the initial value of £ as we have 
done previously in going from (5.4) to (5.5). We are 
therefore assuming here, and this assumption is also 
made in treating v as being of order unity, that / 
changes on a time scale which is long compared to the 
fluid relaxation time. This may become unrealistic in 
cases where the internal velocities of the molecule are 
comparable to those of the fluid particles. 

The tensor 2>(6) will generally be of the form 

5)(6> = 

(D6) 

= L as )' (D13) 

V&12 £ 1 1 / 

where £>a/3 is the three-dimensional tensor 

Jo 

= ^^(^2)5+5^(^1 2)[R1 2R1 2~|(^1 2)25], 

a, |8=1,2. (D14) 

Here A and B are scalar functions of R12. 
It is possible now to introduce four relaxation times 

n in analogy with the r defined in Eq. (6.3). We define 
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the diagonal relaxation times n and r2 by the relations, 

3 Jo 

r r # (3)0(R1,R2,r1)^1 

- V 2 * ( # 1 2 ) l , (D15) 

5n=522=fr 2 {<&il52)-^i i l} :R 1 2 R 1 2 / (^ 2 ) 4 . (D16) 

T2 can also be expressed in terms of n^0. Relaxation 
times can also be assigned to the off-diagonal elements 
of $«$ : 

^12=^21=iT3<5l^2)=~KT3//3)V 2^, (D17) 

^l2=^21=|T4{{?5l?52}-^12l}:R12R12/(^12)4. (D18) 

Using this notation, the Fokker-Planck equation for f2 

may be expressed in terms of the T*'S and the equilibrium 
distributions n^)° and W(2)°. 

The system we are considering might correspond to 
a dilute solution of heavy diatomic molecules, such as 
I2, in a gas like helium. The equation we shall obtain 
for / may then be suitable for discussing the dis
sociation rate of such molecules.21 Alternatively, we 
may consider / to represent the pair distribution 
function of Brownian particles in a fluid interacting 
with each other via a pair potential <£>. The equation 
obeyed by this / will be of the same form as in the first 
case if the density of the B particles is sufficiently low. 
Finally, in the Kirkwood theory, / would be the two-
particle distribution in a liquid, the "host fluid" repre
senting the influence of the other particles. Kirkwood 
made the further approximation of setting r 3 =T4=0 
and r i = T 2 = r , r being defined by (6.3). 

APPENDIX E: BROWNIAN MOTION 
IN A CRYSTAL 

We shall discuss here the motion of a heavy particle 
in a crystalline lattice. This problem was investigated 
and solved in a very interesting series of papers by 
Rubin.22 Rubin considers an ^-dimensional cubic crystal 
with nearest neighbor harmonic forces in which one 
particle has a mass M, which is larger than the masses 
of the other particles m,tn=l. The forces between the 
B particle and the other particles is assumed to be the 
same as the force between two crystalline particles. 
Since this system has purely harmonic forces, the 
equations of motion can be solved exactly and one can 

2 1T. Bak and J. L. Lebowitz, Discussions Faraday Soc. 33, 189 
(1962); Phys. Rev. 131, 1138 (1963). 

22 R. J. Rubin, J. Math. Phys. 2, 373 (1961). 
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find the jB-particle distribution for the case where the 
remainder of the lattice is initially in equilibrium. 
Rubin finds that in one and three dimensions the B-
particle distribution / obeys a Fokker-Planck equation. 
In one dimension the equation is that appropriate to a 
free particle and in three dimensions that appropriate 
to a harmonically bound particle. The one-dimensional 
result was also obtained by Hemmer.23 In two dimen
sions the situation is more complicated and somewhat 
paradoxical24 and leads to the result that the ^-particle 
distribution / does not obey a Fokker-Planck equation. 

We will show first how the method developed in this 
paper for fluids can be generalized to include crystals. 
The formal application of our method always yields a 
Fokker-Planck equation for / to the lowest order in 
7, 7=M~1 / 2 . In one and two dimensions this will be the 
equation appropriate for a free particle. In three 
dimensions the equation will be that appropriate to a 
harmonically bound particle with a restoring force 
equal to that found by Rubin. We shall also evaluate 
the friction constant in one dimension and show that 
it agrees with that obtained by Hemmer and Rubin. 
The failure of our expansion in two dimensions is not 
too surprising since in order to make our proofs rigorous, 
we would need (see Sec. V), the existence of an expo
nential relaxation for the light particles. This is believed 
correct for fluids, while for the simple crystals considered 
here the correlation functions decay essentially as 
a(t)t~ml2, where a(t) is an oscillatory function of the 
time (with a characteristic frequency of the crystal) 
and m is the dimensionality of the system.25 We are 
currently carrying through the detailed computations 
for two- and three-dimensional lattices. 

The main difference between the treatment of a 
fluid and a crystal is that in the latter there is an 
underlying lattice. The potential energy of the system 
is a function of the displacements r* of each particle 
from its own lattice point and of the displacement R of 
the B particle from its lattice point which is not sym
metric in the indexes i. Also the equilibrium distribution 
of the B particle /0(R,V) is no longer independent of R 
even in the absence of an external field. This latter 
situation is similar to that encountered in Appendix D 
and the modification in the general treatment of Sees. 
I I and VI will be similar to that done in Appendix D. 

We write the Hamiltonian of the whole system in a 
form analogous to (D2), 

= H1+HC+U. (El) 

The equilibrium distributions of the whole system juo, 
of the Z?-particle /o, and the conditional distribution 

23 P. C. Hemmer, Det. Fysiske Seminar * Trondheim 2, (1959). 
24 See Sec. VC in Ref. 22. 
26 P. Mazur and E. W. Montroll, J. Math. Phys. 1, 70 (1960). 
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Po are written as 

Mo=Z-V-^, (E2) 

/o= / nodri- • -dindvi- • -dvN 

= Z-iexp{-/3CF1+^(R)]} ) (E3) 

Po=MO//O= exp{ -/8[fl .+ U-*]} 

= exp{- /3 [# 2 -* ]} . (E4) 

Proceeding now as in Appendix D we obtain, to lowest 
order in y, a Fokker-Planck (F.P.) equation for 
/(R,V,0, 

26 R. Peierls, Suppl. Helv. Phys. Acta 2, 81 (1936). 
27 E. W. Montroll, in Proceedings of the Third Berkeley Sympo

sium on Mathematical Statistics and Probability (University of 
California Press, Berkeley, 1956), Vol. 3, p. 209. 

boundary conditions to be such that the end particles 
are fixed, XQ=X2L+2=0. (This avoids the problem of the 
motion of the lattice as a whole which has to be taken 
account of in a rather cumbersome way when periodic 
boundary conditions are used.) Thus, N=2L, and H 
is given by 

2L+1 

ff=i £ [i-df-i)«iH.w>j» 

2L+1 

+4* E fe+i-*;)2, (E9) 
3=0 

where k is the force constant and 

Equation (Ell) for /0 follows immediately from (E15). 

d/(R,V,0 df df 
+V-—+M~1F'- — 

a* aR aR 

= M~2£ [/—I1/--YL (E5) 
avL av \fo/J 

where 
F(R)=-d*(R)/dR=l3-ld ln/o/dR (E6) 

is the average force acting on the B particle, at R, in 
equilibrium and 2) is given as in (D12) by 

2)slim / 
«ir*»JQ 

-*/*o, <Sf(0»>*tt, (E7) 

with 

$ = - (d/dR)[tf (R,n,. • - r * ) - * ( R ) ] . (E8) 

$(t) is to be computed as before from the evolution of 
the crystal under the influence of the Hamiltonian 
H2~HC+U with R kept as a fixed parameter. "£> can 
thus depend on R. 

It is seen from (E5) that when F' vanishes, i.e., /o 
is independent of R, the evolution of f(t) is determined 
by a F.P. equation appropriate for a free particle while 
if /o is a Gaussian in R,/obeys a F.P. equation appro
priate for a harmonically bound particle. Now it has 
been shown by Peierls26 and Montroll27 that in the 
limit of the crystal becoming large, i.e., N—> <*> (the 
limit in which we are interested), /o will be independent 
of R in one and two dimensions and will be Gaussian 
in three dimensions. Equation (E5) thus agrees with 
the results of Rubin in one and three dimensions. [[The 
value of the force F' given by (E6) is correct in all cases 
where the F.P. equation is valid since it is determined 
by the requirement that f(t) approach /0 as t —•» <*>.] 

We shall now evaluate 2) for a one-dimensional 
lattice with nearest neighbor forces. The displacement 
of the particles from their equilibrium positions will be 
denoted by #»; i=0, •••, 2L+2, and with xz,+i=X, 
the displacement of the B particle. We shall choose the 

^ 0 = ^ 2 L + 2 = 0 , (E10) 

XL+I, VL+I being the position and velocity of the B-
particle X, V. It will be shown that 

/< 
_/2*\/L+l\™ 

\8/\2kM/ 

Xexp{-i/?| 
2k 

M F + - X2 

(L+l) 

d<b/dX=-2kX/(L+l) 

] } , (EH) 

(E12) 
so that 

and 

%=k{(xL+2-X)+(xL-X)+2X/(L+l)}. (E13) 

We have to find ^ W when X is kept fixed. It is clear 
that keeping XL+I=X fixed separates the lattice into 
two parts of L particles each with fixed ends. Intro
ducing the variables Uj and yy, 

Uj=Xj+(L+i) — X 

Jj—Xj—X-

(4rJ-
i = 0 , • • • , £ + ! , (E14) 

L+l 

we may write ff2, the Hamiltonian of the lattice with 
XL+I=X, 

2=1 J-O 

+ {II«/+^I(%»-«i)2} 
3=1 3=0 

+fcX2/(L+l), (E15) 

with the boundary conditions 
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The force % will now be This yields, using the independence of the T?S, 

5-*(«i+yL) (E16) 2 x L vs $t 

and <«i(/)«i>= £ sin2( j — — 

= 2#<Wi(0tti>. (E17) ^ / ^ \anco.n 

The second equality follows from the fact that the y's \L+lJ w 2 J ' 
and u's are independent of each other. The evolution 
of Uiif) proceeds according to the Hamiltonian in the x U^UJ 
second curly bracket on the right-hand side of (E15). _ > _ l l /"' c o r f ( i * ) M V f t + s n ( i * ) ] 

We can evaluate (E17) by introducing the normal L-**> Tk J Q 
coordinates27 r?s, +sm[2^k+sin(i$)J}d<f>, 

x and 
«y = E 7̂s sin(7riV^+1), (E18) 2)= 20-%/* > (E21) 5 = 1 

which satisfy the equations which agrees with the result of Hemmer and Rubin. 
We note that the relaxation time r defined in (6.3) is 

\L+lJ T=k~v\ (E22) 


